Extensions 1→N→G→Q→1 with N=C2×S32 and Q=S3

Direct product G=N×Q with N=C2×S32 and Q=S3
dρLabelID
C2×S33248+C2xS3^3432,759

Semidirect products G=N:Q with N=C2×S32 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×S32)⋊1S3 = S3×D6⋊S3φ: S3/C3C2 ⊆ Out C2×S32488-(C2xS3^2):1S3432,597
(C2×S32)⋊2S3 = S3×C3⋊D12φ: S3/C3C2 ⊆ Out C2×S32248+(C2xS3^2):2S3432,598
(C2×S32)⋊3S3 = D64S32φ: S3/C3C2 ⊆ Out C2×S32248+(C2xS3^2):3S3432,599
(C2×S32)⋊4S3 = D6⋊S32φ: S3/C3C2 ⊆ Out C2×S32488-(C2xS3^2):4S3432,600
(C2×S32)⋊5S3 = C2×C33⋊D4φ: S3/C3C2 ⊆ Out C2×S32244(C2xS3^2):5S3432,755

Non-split extensions G=N.Q with N=C2×S32 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×S32).S3 = S32⋊Dic3φ: S3/C3C2 ⊆ Out C2×S32244(C2xS3^2).S3432,580
(C2×S32).2S3 = S32×Dic3φ: trivial image488-(C2xS3^2).2S3432,594

׿
×
𝔽